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Key concepts

• inference requires integrating out variables
• Why may random sampling be useful for integration?
• What happens if the joint distribution is too complicated to sample from?
• Gibbs sampling and conditional distributions
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How do we do integrals wrt an intractable posterior?

Approximate expectations of a function φ(x) wrt probability p(x):

Ep(x)[φ(x)] = φ̄ =

∫
φ(x)p(x)dx, where x ∈ RD,

when these are not analytically tractable, and typically D� 1.
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Assume that we can evaluate φ(x) and p(x).
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Numerical integration on a grid

Approximate the integral by a sum of products∫
φ(x)p(x)dx '

T∑
τ=1

φ(x(τ))p(x(τ))∆x,

where the x(τ) lie on an equidistant grid (or fancier versions of this).
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Problem: the number of grid points required, kD, grows exponentially with the
dimension D. Practicable only to D = 4 or so.
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Monte Carlo

The fundamental basis for Monte Carlo approximations is

Ep(x)[φ(x)] ' φ̂ =
1
T

T∑
τ=1

φ(x(τ)), where x(τ) ∼ p(x).
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Under mild conditions, φ̂→ E[φ(x)] as T →∞. For moderate T , φ̂ may still be a
good approximation. In fact it is an unbiased estimate with

V[φ̂] =
V[φ]
T

, where V[φ] =

∫ (
φ(x) − φ̄

)2
p(x)dx.

Note, that this variance is independent of the dimension D of x.
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Markov Chain Monte Carlo

This is great, but how do we generate random samples from p(x)?

If p(x) has a standard form, we may be able to generate independent samples.

Idea: could we design a Markov Chain, q(x ′|x), which generates (dependent)
samples from the desired distribution p(x)?

x→ x ′ → x ′′ → x ′′′ → . . .

One such algorithm is called Gibbs sampling: for each component i of x in turn,
sample a new value from the conditional distribution of xi given all other
variables:

x ′i ∼ p(xi|x1, . . . , xi−1, xi+1, . . . , xD).

It can be shown, that this will eventually generate dependent samples from the
joint distribution p(x).

Gibbs sampling reduces the task of sampling from a joint distribution, to
sampling from a sequence of univariate conditional distributions.
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Gibbs sampling example: Multivariate Gaussian

20 iterations of Gibbs sampling on a bivariate Gaussian; both conditional
distributions are Gaussian.

Notice that strong correlations can slow down Gibbs sampling.
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Gibbs Sampling

Gibbs sampling is a parameter free algorithm, applicable if we know how to
sample from the conditional distributions.

Main disadvantage: depending on the target distribution, there may be very
strong correlations between consecutive samples.

To get less dependence, Gibbs sampling is often run for a long time, and the
samples are thinned by keeping only every 10th or 100th sample.

Burn-in: often, the initial sequence of samples is discarded, until the chain has
converged to the desired distribution. What does convergence mean in this
context?

It is often challenging to judge the effective correlation length of a Gibbs sampler.
Sometimes several Gibbs samplers are run from different starting points, to
compare results.
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